
















mg/kg of body weight concentration daily for 1 week and found
that S-180-derived tumor growth was decreased to �44.6% of
that of the control group (Fig. 7, C and D). As such, YW3-56
showed a similar tumor growth inhibition effect as that of
SAHA under the conditions applied. Additionally, because we
have found that PAD4 coordinates with HDAC2 in repressing
p53 target gene expression (25), we tested the synergy of the
PAD4 inhibitor and HDAC inhibitor in tumor growth. We
found that after injection of a mix of YW3-56 and SAHA at half
of their concentrations when applied singularly, tumor growth
was decreased to �27.1% of that of the control group (Fig. 7, C
and D), suggesting an additive effect of the two inhibitors. In
comparison with doxorubicin, a well established chemothera-
peutic reagent, amixture of YW3-56 and SAHA showed cancer
growth inhibition effect close to that of doxorubicin applied at
2 mg/kg of body weight concentration (Fig. 7, C and D).

To evaluate whether YW3-56 has adverse effects on the
growth and the vital organ functions in mouse, we measured
the body as well as brain, heart, liver, kidney, and spleen weight
after drug treatment. Daily injection of YW3-56 at 10 mg/kg of

body weight for 1 week did not decrease the size of mouse body
or organs, suggesting that the adverse effects of YW3-56 are low
if any (supplemental Fig. S9). Moreover, SAHA alone or
YW3-56 and SAHA in combination did not impair mouse
growth or sizes of vital organs (supplemental Fig. S9). In con-
trast, the size of the spleen was decreased to �50% of that of
control mice after doxorubicin treatment (supplemental Fig.
S9), suggesting that inhibitors targeting PAD4 and HDACs are
less toxic when compared with doxorubicin. Additionally, we
performed a 3-month YW3-56 treatment experiment with a
daily injection of YW3-56 at 10 mg/kg of body weight in a pair
of nude mice and determined that the sizes of the mouse body
and vital organs were not altered after YW3-56 treatment.

DISCUSSION

An emerging theme in the field of cancer research is that the
epigenetic silencing of tumor suppressor genes can lead to
increased cell growth and cell division during tumorigenesis.
Because epigenetic alterations do not include mutations in
DNA per se, tumor suppressor genes can be turned back on by

FIGURE 6. YW3-56 induces autophagy in human osteosarcoma U2OS cells. A, transmission electron microscopy images of mock-treated cells at low
magnification (Low mag.) and high magnification (High mag.) (upper panels) as well as YW3-56-treated cells (lower panels). Distinctive structures with charac-
teristics of autophagolysosomes in YW3-56-treated cells are denoted by red arrows. Scale bars are 1 �m. B, levels of LC3-I and LC3-II as well as p62/SQSTM1 were
analyzed by Western blot after different doses of YW3-56 treatment for 12 h. C, LC3 was detected in large speckles denoted by white arrows in U2OS cells after
YW3-56 treatment cells (lower panels) but not in control cells (upper panels). D, schematic drawing of the autophagy process. The mCherry-GFP-LC3-PE reporter
is red and green when it associates with phagophores (also called isolation membranes) and autophagosomes (PE denotes phosphatidylethanolamine). After
fusion with lysosomes to form autophagolysosomes, the GFP signal is quenched by the acidic condition. E, a representative microscopy image showing
red-colored autophagolysosomes and red and green double-colored autophagosomes in control mock-treated cells. See video S1 for more details. F, a repre-
sentative microscopy image showing red-colored autophagolysosomes and red and green double-colored autophagosomes in YW3-56-treated cells with slight
morphology changes. See video S2 for more details. G, a representative microscopy image showing red-colored autophagolysosomes and red and green
double-colored autophagosomes in a moribund cell after YW3-56 treatment. Insets show details of the structures at higher magnification. See video S3 for more
details. Arrowheads denote autophagolysosomes, and arrows denote autophagosomes (E–G). Scale bars in panels E–G represent 5 �m.
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targeting epigenetic modifiers, as evidenced by recent progres-
sion in this area (3–5). Previous pathological and genetic stud-
ies have linked PAD4 and protein Arg citrullination with sev-
eral human diseases, including cancers and autoimmune
disorders. In cancer cells, a fine-tuned increase of PAD4protein
represses the expression of p53 target genes, such as p21/
CDKN1A, GADD45, and PUMA. Here, using the newly devel-
oped PAD inhibitors, we identified a novel molecular mecha-
nism by which PAD4 represses the expression of the p53 target
gene SESN2 to promote cancer cell growth, suggesting that
PAD4 may facilitate tumorigenesis from multiple aspects. The
lead compound YW3-56 demonstrates tumor growth inhibi-
tion effects singularly or in combinationwith SAHA, whereas it
has little if any detectable side effects under the conditions
applied. Given that PAD4 is overexpressed in the majority of
human cancers of many tissue origins and that its levels are
elevated in the blood of cancer patients (21), further investiga-
tion of PAD4 and its inhibitors is of important value in cancer
diagnosis and treatment.
Cancer cells respond very fast to YW3-56 treatment. As

quick as 6 h after YW3-56 addition to U2OS cells, we observed

changes in cell morphology, such as a loss of cell attachment
and formation of cytosolic bubbles. This fast kinetics is in
agreement with the high membrane permeability and accumu-
lation in cancer cells detected by flow cytometry analyses as
well as the immediate induction of the SESN2 andDDIT4 gene
expression within hours after the drug treatment. Autophagy
represents an important cellular adaptation response to various
stress signals (37, 38, 52). Starvation leads to the activation of
several signaling pathways including the p53-SESN2 axis. Once
expressed, SESN2 canwork together with the TSC1-TSC2 pro-
tein complex to inhibit the mTORC1 complex-mediated phos-
phorylation of its target proteins that are involved in protein
synthesis. The decreased rate of protein translation is coupled
with a concomitant increase of cellular autophagy. Our siRNA
results showed that SESN2 is directly regulated by PAD4 and is
a sufficient factor for regulating the phosphorylation of
mTORC1 substrate p70S6K. YW3-56 activates the expression
of SESN2 and inhibits the phosphorylation of p70S6K, offering
a mechanism by which YW3-56 may induce autophagy. More-
over, YW3-56 treatment leads to the accumulation of both
autophagosomes and autophagolysosomes as well as the accu-

FIGURE 7. YW3-56 inhibits tumor growth in a mouse tumor model and cooperates with the HDAC inhibitor SAHA. A, the growth inhibition of mouse
sarcoma S-180 cells after YW3-56 treatment was analyzed by MTT assays (averages and standard deviations are shown, n � 3). B, p53 and its target gene
expression levels were analyzed by RT-qPCR in S-180 cells after YW3-56 treatment (averages and standard deviations are shown, n � 3). DRAM, damage-
regulated autophagy modulator; AMPK, AMP-activated protein kinase. C, growth inhibition of S-180 cell-derived tumors in mice by YW3-56, SAHA, a combi-
nation of YW3-56 and SAHA, or doxorubicin. In total, 27 mice for control, 21 mice for YW3-56, 11 mice for SAHA, 11 mice for SAHA and YW3-56, and 15 mice for
doxorubicin treatment from the above two independent experiments were used to collect data for tumor sizes and body/organ weights. Averages and
standard deviations are shown. Statistical analyses were performed using Student’s t test. D, representative images showing the tumor mass in control mice
and mice after YW3-56, SAHA, or a combination of YW3-56 and SAHA treatment.
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mulation of p62/SQSTM1, suggesting that it exacerbates the
autophagy burden by inhibiting autophagic vesicle degrada-
tion. Our ongoing research will further unveil the molecular
and cellular mechanisms underlying the YW3-56 activity to
curb cancer cell growth.
Cl-amidine was originally designed as a structural mimic

of the PAD substrate peptidylarginine by the Thompson
group (44). Cl-amidine shows a broad inhibition of all
active PAD family members, albeit at different efficiency
(PAD1�PAD4�PAD3�PAD2) (45). Our work has found that
Cl-amidine exerts 50% tumor growth inhibition at �150–200
�M concentrations (24). In this study, we developed a set of
novel PAD inhibitors by an extensive structure-and-activity
relationship study based on the chloroacetamidine functional
group, which covalently modifies the active center cysteine of
the PAD enzymes (44). The lead compound YW3-56 inhibits
cancer cell growth at low micromolar concentrations, showing
�60-fold increase in cancer growth inhibition over Cl-amidine.
This gain in YW3-56 inhibitor efficacy is due to two possible
factors: 1) a mild increase in PAD4 inhibition achieved by opti-
mizing the backbone; and 2) a large increase in the membrane
permeability of YW3-56 by the addition of amore hydrophobic
dimethyl-amide-naphthalene moiety at the N� position and a
phenyl ring at the C� position. In parallel to our study, the
Thompson group (45, 55) has recently reported two additional
structures related to Cl-amidine by adding one or two amino
acids to theN� position of Cl-amidine. Given that these inhib-
itors are all developed on amechanism-based design, they need
to compete with the in vivo PAD substrates to achieve efficient
inhibition. Allosteric effect inhibition may represent a future
strategy to develop additional inhibitors.On the other hand, the
current experimental data found that mechanism-based PAD
inhibitors derived from the Cl-amidine backbone show phar-
macological efficacy both in cell culture and in mouse models,
suggesting that this strategy may prove to be viable in future
pharmacology exploration.
The PAD family of contains five members in human and

mouse, including PAD1–4 and PAD6, that show tissue and
substrate specificity (56, 57). A recent study with PAD2, PAD3,
and PAD4 enzymes found that PAD4 prefers histone H3,
whereas PAD2 prefers actin for citrullination (11). However,
the interaction of PAD4 with its substrate peptides is mainly
mediated by the peptide backbone (58), suggesting that PAD4
may target Arg residues embedded in a diverse range of sub-
strates. To date, histones H3, H4, andH2A, ING4, nucleophos-
min, and nuclear lamin C have been identified as substrate of
PAD4. This imposes a future challenge in addressing the func-
tion of PAD4 in targeting these particular substrates. On the
other hand, the loose substrate context dependence of PAD
proteins likely imposes additional challenges to developing iso-
form-specific PAD inhibitors for biology and preclinical stud-
ies. The lead compound YW3-56 can inhibit both PAD2 and
PAD4. At the current stage of our inhibitor and drug develop-
ment, the broad inhibition of YW3-56 to PAD enzymes should
not be a concern for clinical application given that many effec-
tive cancer therapies target general cellular processes and suc-
cessful epigenetic inhibitors used in cancer therapy often target

a family of enzymes, such as the DNAmethyltransferase inhib-
itors and the histone deacetylase inhibitors.
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because we used a solution-based synthesis scheme to generate PAD
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